Quality assurance of stereolithography based biocompatible materials for dental applications

Author:

Krishna Amogh VORCID,Reddy Vijeth VORCID,Dexter Dyall W,Wälivaara Dan-Åke,Abrahamsson Peter,Rosen B-G,Anderud Jonas

Abstract

Abstract Additive Manufacturing (AM) is increasingly being used in healthcare sectors for its potential to fabricate patient-specific customized implants, and specifically in dentistry, AM finds its applications in maxillofacial implants, dentures, and other prosthetic aids. However, in most applications, AM is largely being used for prototyping purposes. The full-scale realization of AM can only be achieved if the downsides of AM are addressed and resolved. Hence this paper focuses on providing a detailed analysis of surface quality, dimensional accuracy, and mechanical properties of the biocompatible material produced, using the Stereolithography (SLA) method for a dental application. For quality analysis, test artefacts were produced, and the quality was assessed before and after the sterilization process. The results suggest that micro-surface roughness essential for cell growth is similar for all build inclinations and well within the control limit required for effective bone regeneration. Multi-scale surface characterization revealed that the sterilization process involving heat can potentially alter the micro-roughness features of resin-based materials. The results from the dimensional analysis show that the SLA parts produced had negligible dimensional deviations from the CAD model to the printed parts and were unaffected by the sterilization process. The tensile test results suggest that the part orientation does not affect the tensile strength and that the sterilization process seems to have an insignificant effect on the tensile properties of the SLA parts. Furthermore, the results were validated by producing a membrane barrier for Guided Bone Regeneration (GBR). The validation results showed that excess resin entrapment was due to the geometrical design of the membrane barrier. In conclusion, this paper provides an overview of quality variations that can help in optimizing the AM and sterilization process to suit dental needs.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Reference34 articles.

1. Additive Manufacturing Technologies

2. Main applications and recent research progresses of additive manufacturing in dentistry;Huang;Biomed Res. Int.,2022

3. Application of additive manufacturing in oral and maxillofacial surgery;Farré-Guasch;J. Oral Maxillofac. Surg.,2015

4. On guided bone regeneration using ceramic membranes;Anderud,2016

5. On implant surfaces: a review of current knowledge and opinions;Wennerberg;Int. J. Oral Maxillofac. Implants,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3