Impact of incorporating FeNbC into weld flux on the abrasive wear resistance of coatings produced by SAW in a microalloyed steel

Author:

Pollnow Edilson N,Cardoso Frantchescole BORCID,das Neves Ederson B,Santos Rodrigo B,Osorio Alice GORCID

Abstract

Abstract Owing to the global shortage of raw materials and an increase in their prices, there is a growing demand for engineering solutions to increase the lifespan and durability of equipment and components. Therefore, this study aims to combine surface engineering and welding engineering to produce a niobium-rich coating using submerged arc welding (SAW) deposition. SAW is a cost-effective technique that allows high deposition rates and technical simplicity, which can enhance mechanical properties and resistance to abrasive wear of components. This research involves the addition of a FeNbC powder alloy in percentages of 5, 10, and 15 wt% to a neutral commercial SAW flux, as an alternative to adding Nb to the microstructure of the deposited coating. The coating was characterized by optical microscopy to analyze the microstructure, such as the presence of phases; microhardness through a Vickers micro-durometer, and resistance to abrasive wear through the loss of mass using a rubber wheel-type abrasometer. The wear mechanisms were evaluated using scanning electron microscopy. The results showed that a Nb-rich coating can be deposited via SAW, and the coatings successfully increased microhardness by up to 110% and resistance to abrasive wear to values higher than the base metal used (microalloyed steel). The microstructure formed was rich in Fe2Nb and NbC, proving the formation of Nb-rich phases. Additionally, the mechanism of abrasive wear was predominantly plastic for the base metal and changed to micro-cutting and micro-plowing after the addition of up to 15% of FeNbC.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3