Effects of ultrasonic surface rolling and plasma nitriding on microstructure and properties of 690TT alloy

Author:

Chen BaoquanORCID,Liu Junbiao,Li Xiaoxian,Chen Weiqing,Zhang XuehuiORCID,Liang Tongxiang

Abstract

Abstract To enhance surface mechanical properties of 690TT alloy, a surface hardening layer was obtained by ultrasonic surface rolling treatment (USRT) and plasma nitriding (PN). The surface morphology, mechanical properties, wear performances and corrosion performance were investigated by XRD, TEM, using a hardness tester, tensile tester, wear tester and electrochemical workstation in simulated sea water, respectively. The results showed that USRT as the pre-treatment can strengthen the performance of PN treatment samples. The USRT + PN treated sample showed existence of dislocation tangles and twin grains. Corrosion resistance in simulated sea water was enhanced. The surface microhardness increased by 180% compared with the untreated sample, the cross-sectional hardness gradually decreased till the depth of 1 mm. The tensile strength increased by a factor of 90% while the elongation decreased by only 40%. The wear scar was narrower and shallower than the untreated sample and the wear rate was significantly dropped. This paper aims at providing a new method for surface strengthening of 690TT alloy.

Funder

JiangXi University of Science and Technology

Technology Research Project of Ganzhou

Foundation of Jiangxi Province

Qingjiang Young Talents Support Program of Jiangxi

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3