The effect of chemical treatment on the adhesion strength and structural integrity of the epoxy coatings

Author:

Farooq AORCID,Hannan A,Ahmad R,Deen K MORCID

Abstract

Abstract This research aims to investigate the effect of chemical treatment on the integrity of the epoxy coating applied on mild steel substrates. Grit blasted steel samples were chemically treated in 10 vol.% NaOCl solution, 10 vol.% CrCl3 and 30 vol.% H3PO4–5 vol.% HNO3 solutions prior to coating application. Post-cleaning surface morphology and chemical composition revealed the formation of oxidation products on steel surface. Under optimized conditions, a dry film thickness of 135 ± 3 μm of epoxy coating was achieved. The CT2 sample (pre-treated with CrCl3) presented higher coating adhesion strength (∼4.12 MPa) and the lowest rust area of ∼0.03% compared to other chemically treated samples during 720 h of immersion in 5 wt.% NaCl solution. The coating degradation mechanism was evaluated by electrochemical impedance spectroscopy (EIS) after 24, 48, 72 and 120 h of immersion in 3.5 wt. % NaCl solution. EIS analysis of the coated samples pretreated with NaOCl and CrCl3 solutions exhibited low water uptake and limited corrosion due to hindrance in the diffusion of ionic species through the coating. However, coated steel samples pretreated in acidic solutions displayed appreciable corrosion damage as confirmed from salt spray and immersion tests. For instance, the delamination of the CT3 and CT4 (acid pre-treated) coatings was confirmed from the EIS analysis., which represented the formation of a double layer and occurrence of faradaic (corrosion) reactions as the coating-substrate interface, resulting in ∼15%–30% delamination in 120 h of exposure.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3