Comparison of the wear behavior and surface properties of zirconia and resin-based CAD/CAM restorative materials after different sandblasting procedures

Author:

Alper Seval BaşpınarORCID,Tekçe Neslihan,Fidan Sinan,Balcı Sibel

Abstract

Abstract Objective: To evaluate the effects of different sandblasting procedures on the wear and surface properties of zirconia and resin-based CAD/CAM restorative materials and to evaluate the relationships among materials and procedures. Materials and Methods: A total of 160 specimens of 2 mm thickness were prepared from Cerasmart, Vita-Enamic, Tetric-CAD, and Katana-Zirconia CAD/CAM materials. Each material was divided into four groups. Group-1: Control; Group-2: 29 μm Al2O3; Group-3: 30 μm CoJet; and Group-4: 50 μm Al2O3. Sandblasting procedures were applied from a distance of 10 mm for 15 s at 2 bar pressure. The volume loss resulting from sandblasting was calculated. The samples were then scanned with a Nanovea-PS50 non-contact profilometer. The Ra, Rz, and Sa values were recorded. The data were analyzed with the Shapiro-Wilk test and two-way ANOVA. Results: Group-4 showed the highest Ra and Rz values in all materials. The highest Sa and volume differences values were observed for Cerasmart, Vita-Enamic, and Tetric-CAD in Group-4; similar values were obtained for Katana-Zirconia. When the materials were compared, Cerasmart exhibited the highest volume differences, Ra, Rz, and Sa values in Group-4, while Katana-Zirconia demonstrated the lowest. Conclusions: Sandblasting procedure and material type showed a significant impact on the wear and surface properties. The abrasive effect increased with the increasing Al2O3 particle sizes for resin-matrix materials. Sandblasting with 50 μm Al2O3 exhibited the lowest wear and surface roughness values for Katana-Zirconia and the highest for Cerasmart.

Funder

The Scientific Research Projects Coordination Unit of Kocaeli University

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3