Investigations on the properties of composite coatings electro co-deposited on AZ80 Mg alloy using triangular waveform pulse current

Author:

Pushpanathan D PeterORCID,Alagumurthi N,Devaneyan S Pradeep

Abstract

Abstract In this research, boron carbide (B4C) and titanium carbide (TiC) nanoparticles were deposited along with Nickel on AZ80 magnesium alloy substrates. Triangular waveform pulse current was used for depositing the coatings on the substrate. The objective of this research is to investigate the microstructural evolution of the coatings in response to the current density, duty cycle and the concentration of reinforcements in the bath. The influence of process parameters were also assessed in terms of the microhardness and specific wear rate. To enhance the surface properties of AZ80 magnesium alloy, a three component layer was successfully applied via electro co-deposition technique for the first time. The magnesium alloy substrates were cleaned and pretreated as per ASTM B480−88. The pretreated samples were coated at three levels of current density viz. 1.5 A dm−2, 2 A dm−2 and 2.5 A dm−2, and the duty cycle was varied between 30%, 40% and 50%. The concentrations of reinforcements in the bath were kept at 0 g l−1, 0.5 g l−1 and 1 g l−1. The samples were coated according to Taguchi L9 orthogonal array with two replications. The microstructural studies conducted using scanning electron microscope (SEM) revealed the defects, grain refinement and homogeneous distribution of reinforcements in the Ni matrix. The deposition and orientation of reinforcements in preferred planes were investigated with XRD. Vickers microhardness tests conducted as per ASTM E384-17 revealed that the sample coated with 2.5 A dm−2 current density, 30% duty cycle, 1 g l−1 B4C and 0.5 g l−1 TiC produced the coatings with the highest hardness of 412.56 Hv. XRD patterns revealed higher Ni peaks and preferential deposition in the (201) plane of B4C and (200) plane of TiC causing the hardness to improve. The results of the pin on disc wear tests conducted according to ASTM G99 were in agreement with the hardness results and the corresponding microstructure. The sample with the maximum microhardness exhibited the minimum specific wear rate of 2.1 E-08 mm3 Nm−1. The ability of triangular pulse current in waveform to deposit hybrid composite coatings on AZ80 magnesium alloy and enhance its surface properties has been confirmed by the results of this research.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3