Microstructure, mechanical and wear behavior of LM24/SiC/MoS2 hybrid composites produced via liquid metallurgy process

Author:

Hariharan S RORCID,Mahendran S,Meignanamoorthy MORCID,Ravichandran MORCID

Abstract

Abstract Silicon carbide (SiC) and Molybdenum disulphide (MoS2) has been expected broad contemplation is a potential strengthening particulate for metal matrix composites (MMCs) to enhance the mechanical and wear behaviors. The purpose of this study is to process and investigate the mechanical characteristics of LM 24/SiC/MoS2 composites. These composites were fabricated via the stir casting process from the prepared arrangements of LM 24/SiC/MoS2 with various weight proportions. The following proportions are pure LM 24, LM24-3wt%SiC-1wt%MoS2, LM24-6wt%SiC-1wt%MoS2 and LM24-9wtSiC-1wt%MoS2. The scanning electron microscope (SEM) utilized to inspect the micrographs on processed composites. The SEM micrographs interpret identical dispersion of SiC with LM 24. The influence of SiC weight percentage on the physical properties like density, relative density & porosity and mechanical properties like tensile, compression, hardness, impact and flexural strength and tribological behavior were investigated. The processed LM24-9wt%SiC-1wt%MoS2 composites compose the enhanced mechanical properties. The wear performance was studied throughout the pin on disc device with various wear process parameters. These parameters are load, Sliding velocity and distance. Finally, these parameters are framed via the L16 orthogonal array and to attain the minimum wear rate and coefficient of friction from the optimal process parameters by Grey Relational Analysis (GRA). The optimal parameters for wear rate and coefficient of friction are LM24-9wt%SiC-1wt%MoS2 and followed by the wear parameters namely load 15N, sliding velocity 2 m s−1 and sliding distance 1600 m, respectively. The ANOVA outcomes uncovers that the load is the most significant parameter for wear rate and coefficient of friction.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3