Surface modification of PLA scaffold using radio frequency (RF) nitrogen plasma in tissue engineering application

Author:

Mohsenimehr Soad,Khani Mohammad RezaORCID,Fani Nesa,Baghaban Eslaminejad Mohammad RezaORCID,Shokri BabakORCID,Ghassami AmirrezaORCID

Abstract

Abstract In this study, two models of flat film and three-dimensional porous structure made by 3D printing (scaffolding) of poly lactic acid polymer (PLA) were processed by radio frequency (RF; 13.56 MHz) low-pressure nitrogen, nitrogen/oxygen and nitrogen/hydrogen plasma to improve surface properties requested in tissue engineering. Samples were treated at different RF power (80–150 w) and time processing was 90 s. Optical emission spectroscopy was used to identify the species in plasma. A significant change in hydrophilicity and surface energy measured by contact angle was observed. Aging effect on the wettability of PLA films at two different temperatures was examined. The result showed that the samples, kept at low temperature, have not changed significantly. Morphology and surface roughness were studied by Atomic force microscopy. Chemical components at the surface were investigated by x-ray photoelectron spectroscopy (XPS). Mechanical and thermal effect on the 3D scaffold PLA were carried out by tension test and thermogravimetric analysis respectively to indicate the effects of RF plasma treatment on the samples. The structural order, interconnectivity, and scale of the scaffold holes have been recorded by an optical microscope. Surface treatment by plasma increased biocompatibility of PLA samples without any toxicity. Cell adhesion on scaffolds was approved through MTT and scanning electron microscope (SEM) analysis. MTT essay show there was significant different between N2/O2 (1:1) group than control sample. Plasma surface treatment is a convenient method to reach a perfect substrate with desired hydrophilicity for attaching cells.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3