Optimization and effect of load, sliding velocity, and time on wear behavior of AA8011- 8 wt.% fly-ash composites

Author:

S MagibalanORCID,C Senthilkumar,M PrabuORCID,S YuvarajORCID,A V BalanORCID

Abstract

Abstract This research work was undertaken to study the effect of dry sliding wear process parameters such as load, time, and sliding velocity on the wear rate and coefficient of friction of AA8011 with 8 wt.% fly-ash composites. The response surface methodology was used to determine the most important criteria to maximize the wear rate and minimize the coefficient of friction. The experimental procedure was designed based on second-order rotatable central composite design. The optimization studies were carried out on dry sliding wear process parameter with multi-response characteristics, including the wear rate, coefficient of friction, based on multi-criteria decision-making using the TOPSIS approach. Sensitivity analysis was used to identify the important criteria and classify them by their order of importance in model validation. A confirmation test was carried out to validate the results, and the obtained optimal parameter levels were found to be very close to an ideal solution.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3