Modeling the systematic behavior at the micro and nano length scales

Author:

Quagliotti DaniloORCID

Abstract

Abstract The assessment of the systematic behavior based on frequentist statistics was analyzed in the context of micro/nano metrology. The proposed method is in agreement with the well-known GUM recommendations. The investigation assessed three different case studies with definition of model equations and establishment of the traceability. The systematic behavior was modeled in Sq roughness parameters and step height measurements obtained from different types of optical microscopes, and in comparison with a calibrated contact instrument. The sequence of case studies demonstrated the applicability of the method to micrographs when their elements are averaged. Moreover, a number of influence factors, which are typical causes of inaccuracy at the micro and nano length scales, were analyzed in relation to the correction of the systematic behavior, viz. the amount of repeated measurements, the time sequence of the acquired micrographs and the instrument-operator chain. The possibility of applying the method individually to the elements of the micrographs was instead proven not convenient and too onerous for the industry. Eventually, the method was also examined against the framework of the metrological characteristics defined in ISO 25 178-600 with hints on possible future developments.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Reference61 articles.

1. An international comparison of surface texture parameters on polymer artefacts using optical instruments;Tosello;CIRP Ann.,2016

2. Dimensional micro and nano metrology;Hansen;CIRP Ann.,2006

3. Replication of micro/nano surface geometries;Hansen;CIRP Ann.,2011

4. Introduction to surface topography;Leach,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3