Using artificial intelligence to predict the tribology behavior of MoS2-Al2O3 hybrid nanofluid

Author:

He JiaqiORCID,Li Huijian,Tang Huajie,Guo Zihan

Abstract

Abstract Artificial intelligence algorithms including two artificial neural network and two machine learning algorithms were employed to predict the four-ball tribology behavior of MoS2-Al2O3 hybrid nanofluid. MoS2-Al2O3 composite nanoparticles were synthesized using solvothermal method and then dispersed in water-based fluids. 27 groups of tribology tests were conducted according to Box-Behnken experimental design were set as the training groups. The input variables (velocity of friction pairs, test force, test temperature, nanoparticle concentration) and output parameters (friction coefficient, wear scar diameter, wear surface roughness) were selected as the main variables. It was found that the random forest (RF) had better predict accuracy and stability for the four-ball tribology behavior of MoS2-Al2O3 nanofluid than multilayer perceptron (MLP), back propagation (BP) and k-nearest neighbors (KNN) algorithms. Besides, Pearson correlation analysis was carried out to reveal the relationship between input and output as well as different output variables. Through in-depth characterization of worn surface, a tribofilm in the thickness of 15 ∼ 20 nm composed of amorphous phases, ultra-fine nanoparticles and iron compounds was found. Finally, the lubrication mechanism of MoS2-Al2O3 nanofluid were discussed based on analyzing the tribology behavior data and tribofilm structure. Through the above findings, we hope to promote the application and development of artificial intelligence techniques in lubricants design and performance evaluation in the future.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3