Effect of plasma immersion ion implantation on wear behavior of Ti-6Al-4V alloy

Author:

Assis Resende FabríciaORCID,Silva Maria MargarethORCID,de Moares Oliveira RogerioORCID,Silva CarlaORCID,Pichon LucORCID,Alves Radi PolyanaORCID,Gonçalves dos Reis AdrianoORCID,Aparecida Pereira Reis DanieliORCID

Abstract

Abstract Ti-6Al-4V alloy is ideal for use in the aeronautical and aerospace industries because of its excellent strength/weight ratio and corrosion resistance. However, its applications at high temperatures are vulnerable due to its high affinity for interstitial elements, such as nitrogen and oxygen. The plasma immersion ion implantation (PIII) technique, performed at high temperature, allows formation of modified layers that can improve the mechanical and tribological properties without compromising the corrosion resistance, which is a characteristic of this alloy. In this work, the samples were treated by PIII at three different temperatures (700, 800, and 900 °C) for 120 min of exposure to evaluate PIII on the mechanical behavior of Ti-6Al-4V alloy compared to data already available in the literature. The aim of this process is to improve surface mechanical properties of the Ti-6Al-4V alloy. The techniques used in this work were x-ray diffraction microhardness, glow discharge optical emission spectrometer, and wear testing in a ball-on-disk tribometer. The results indicate a significantly increased material resistance, with a reduced wear for all treated samples and a reduced friction coefficient for samples treated at 800 and 900 °C. The best results were for alloy treated at 800 and 900 °C, because they maintain the low coefficient throughout the test, which indicates better wear resistance.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brazilian Tribology: origin, status quo and future perspectives;Surface Topography: Metrology and Properties;2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3