A transfer learning based artificial neural network in geometrical design of textured surfaces for tribological applications

Author:

Mousavirad Seyed Jalaleddin,Rahmani RaminORCID,Dolatabadi Nader

Abstract

Abstract This study aims at introducing the potential to utilise transfer learning methods in the training of artificial neural networks for tribological applications. Artificially enhanced surfaces through surface texturing, as an example, are investigated under hydrodynamic regime of lubrication. The performance of these surface features is assessed in terms of load carrying capacity and friction. A large performance dataset including bearing load carrying capacity and friction is initially obtained for a specific category of textures with rectangular cross-sectional profile through analytical methods. The produced bearing performance are used to train a neural network. This neural network was then trained further by a minimal set of performance measure data from an intended category of textures with triangular cross-sectional profiles. It is shown that the resulting neural network performs with acceptable level of confidence for those intended texture profiles when trained with such relatively low number of performance data points. The results indicate that fast analytical methods can potentially produce a large volume of training datasets, which effectively allows for use of relatively lower number of training data sets from the intended category, where creating data for trainings can be more complex or time consuming. Use of transfer learning method in tribological applications and use of bearing performance parameters, as opposed to bearing design parameters, for training the neural networks are the major novel contributions of this study, which has not hitherto been reported elsewhere.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Reference32 articles.

1. Tribological performance of surface texturing in mechanical applications—a review;Lu;Surface Topography: Metrology and Properties,2020

2. Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: a review;Mao;J. Manuf. Processes,2020

3. A theory of lubrication by microirregularities;Hamilton;Journal of basic engineering, Transactions of the ASME,1966

4. Micro-asperity lubrication;Anno;J. of Lubrication Tech.,1967

5. The running-in of engines: choice of cylinder bore finish;Williams;Proceedings of the Institution of Mechanical Engineers: Automobile Division,1954

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3