Microstructure and properties of plasma cladding Ni-based alloy coated on 40Cr Surface

Author:

Xun QiwenORCID,Liu YanhuiORCID,Pan ZengrenORCID,Wu Ying

Abstract

Abstract Three Ni-based alloys (Ni60, Ni65, Ni60W) were selected to be coated on the surface of 40Cr and 20 steel. The microstructure, phase composition and elemental distribution of the coatings were characterised respectively to discuss the effects of different substrates, cladding materials, and processes. The corrosion and thermal fatigue behaviour of the coatings were investigated. The results show that the coatings prepared by plasma cladding have a dense microstructure with few defects and a white bright band of a certain thickness was formed between the coating and the substrate. The white bright band between the coating prepared by flame spraying and the substrate was not obvious. The main phase compositions of the coatings are Cr23C6, Cr7C3, Ni2.9Cr0.7Fe0.36 and FeNi3 phases, with the W2C phase also present in the Ni60W coating. The heat-affected zone (HAZ) of the coating is influenced by the coating preparing processes, substrate material and process state of substrates: the size of the HAZ of the plasma cladded coating is smaller than that of the flame sprayed coating, the HAZ of the 40Cr substrate is smaller than that of the 20 steel, and the HAZ of the tempered 40Cr substrate is smaller than that of the annealed 40Cr substrate. The Ni-based alloy coating can effectively improve the surface hardness of the substrate. The Ni65 alloy powder is the most effective (HV0.5992), followed by the Ni60W alloy powder (HV0.5798) and finally the Ni60 alloy powder (HV0.5712). The Ni65 alloy coating has the relatively best thermal fatigue properties, followed by the Ni60W alloy coating and the Ni60 alloy coating is the relatively worst. At the same time, the corrosion resistance of different Ni-based alloy coatings is consistent with the thermal fatigue properties of the coatings.

Funder

Natural Science Foundation of Shanghai Municipality

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3