Synergistic lubrication effects and tribological properties of graphene/oil-based lubricant systems

Author:

Pan LingORCID,Han YuqingORCID,Chen Yunhui,Guo Liming

Abstract

Abstract Graphene exhibits great potential as an additive to enhance the anti-wear and friction reduction capacity of moving mechanical components in a synergistic mechanism with the base oil. This paper considers the effect of different factors such as the number of base oil molecules, graphene content, normal load, sliding velocity and the presence of graphene. The synergistic mechanism of graphene and base oil is investigated by experiments and molecular dynamics (MD) simulations. The results show that the friction and wear reduction is due to the formation of the load-supporting graphene layers and sufficient base oil molecules between Fe slabs. Graphene can stably adsorb on the rubbing surfaces lubricated by the base oil, confirming that graphene can form a physical deposition film on rubbing surfaces. Low friction and wear can be achieved with higher sliding velocity and lower load. Furthermore, compared to the sliding velocity, the load significantly affects the mean square displacement of base oil and oleic acid molecules. These outcomes provide a better understanding of the tribological properties of graphene as a lubricant additive.

Funder

National Natural Science Foundation of China

Fujian industry university cooperation project

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3