Abstract
Abstract
Samples of AISI 409 were thermochemically treated by the Solution Heat Treatment after Plasma Nitriding (SHTPN) process. SHTPN process consisted of a nitriding step followed by solution annealing at 1100 °C and rapid cooling down to room temperature. The second cycle of quenching (950 or 1050 °C), followed by tempering (250, 450, or 650 °C), was performed sequentially to SHTPN. Lubricated reciprocating tests were employed to analyze friction and wear behaviors. A bearing steel ball was used as a counterpart. The analysis of worn surfaces was assessed using optical interferometry and depth-sensing indentation. The last technique allows determining the work hardening caused by the wear process. Friction behavior was related to the deformation component: the higher the hardening, the higher the friction coefficient. Abrasion is the primary mechanism observed in all specimens, but there is a transitional behavior that depends on the original hardness of the surface. Samples with a similar hardness of bearing ball presented delaminated regions caused by highly deformed thin layer fatigue. Amongst SHTPN conditions NS-Q950-T2 and NS-Q1050-T2 presented the best balance of wear and corrosion performances.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Subject
Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献