Investigation of surface roughness and material removal rate of WEDM of SS304 using ANOVA and regression models

Author:

Srinivasan D,Ganesh NORCID,D Jafrey Daniel JamesORCID,Ramakrishnan H,Balasundaram RORCID,Sanjeevi R,Pandiyan G KarthikORCID,Kumar G Sathish,Chandran Mohanraj

Abstract

Abstract Use of machine learning and artificial intelligence (AI) to analyze the complex interdependencies of production dataset has gained momentum in recent years. Machine learning and predictive algorithms are now used by manufacturers to fine-tune the quality of their products. WEDM of SS304 with process parameters such as pulse-on-time (Ton), pulse-off-time (T off), current (I), and voltage (V) was varied to study the effect of machining parameters such as Material Removal Rate (MRR) and surface roughness. Experiments were planned and executed according to the L’9 orthogonal array. Scanning Electron Microscope (SEM) was utilized to study the machined surface. An analysis of variance (ANOVA) was performed to determine the input and output significance. ANOVA results revealed that V (81.85%) and Toff (77.75%) for surface roughness. Further to determine the relationship between variables, various regression models based on machine learning was tested. The effectiveness of the regression models were tested. From their output it was concluded that the multilayer perception model had the highest correlation coefficient (0.999) for MRR while for surface roughness it was (0.995).

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3