Silicone implant surface roughness, friction, and wear

Author:

Atkins Dixon JORCID,Chau Allison LORCID,Rosas Jonah MORCID,Chen Yen-TsungORCID,Chan Samantha T,Manuel Urueña Juan,Pitenis Angela AORCID

Abstract

Abstract Some textured silicone breast implants with high average surface roughness (‘macrotextured’) have been associated with a rare cancer of the immune system, Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL). Silicone elastomer wear debris may lead to chronic inflammation, a key step in the development of this cancer. Here, we model the generation and release of silicone wear debris in the case of a folded implant-implant (‘shell-shell’) sliding interface for three different types of implants, characterized by their surface roughness. The ‘smooth’ implant shell with the lowest average surface roughness tested (Ra = 2.7 ± 0.6 μm) resulted in average friction coefficients of μ avg = 0.46 ± 0.11 across 1,000 mm of sliding distance and generated 1,304 particles with an average particle diameter of D avg = 8.3 ± 13.1 μm. The ‘microtextured’ implant shell (Ra = 32 ± 7.0 μm) exhibited μ avg = 1.20 ± 0.10 and generated 2,730 particles with D avg = 4.7 ± 9.1 μm. The ‘macrotextured’ implant shell (Ra = 80 ± 10 μm) exhibited the highest friction coefficients, μ avg = 2.82 ± 0.15 and the greatest number of wear debris particles, 11,699, with an average particle size of D avg = 5.3 ± 3.3 μm. Our data may provide guidance for the design of silicone breast implants with lower surface roughness, lower friction, and smaller quantities of wear debris.

Funder

National Science Foundation (NSF) Materials Research Science and Engineering Center

Establishment Labs

National Institute of General Medical Sciences of the National Institutes of Health

National Science Foundation Graduate Research Fellowship Program

Bill and Melinda Gates Foundation

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3