On communicating extruded aluminium surface quality along the supply chain – a customer approach to sustainable surfaces

Author:

Rebeggiani SORCID,Bergman MORCID,Rosén B-G,Eriksson LORCID

Abstract

Abstract Today, far too many products are scrapped due to surface related issues, products with perfect function but with minor surface blemishes. The complaints are often offset by goodwill commitments from suppliers at great cost to them and delivery delays and lead time costs for customers. The reason is that the industry relies on several non-standardized classification systems for surface quality that are based on various combinations of and designations for surface defects, assessed by visual inspections at a defined distance to determine the severity of any detected surface deviations. These similar classification systems provide far too much scope for subjective and non-repeatable assessments causing communication problems between customer and producer at all stages in the supply chain. To challenge this situation, a common toolbox to communicate, describe and define surface quality should be developed, i.e. a standardisation of surface quality assessment including various effects and defects with a jointly established nomenclature and evaluation parameters. This work presents the first step of a research project bringing together 11 suppliers and OEMs along the supply chain, from the delivery of raw aluminium to finished alumina profiles included in consumer products. The final goal of the project is to develop an ‘objective classification of visual requirements’ on alumina profiles towards increased sustainability and decreased material wastage. Presented result is a common terminology with links to the process chain, surface defect geometry and visual appearance aiming at making the communication between producers and buyers of the aluminium profiles clearer and more unambiguous when it comes to specification and requirements of profile surfaces in each of the supply-chain links. Future work will add measurable parameters specifying surface quality.

Funder

VINNOVA

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3