Analysis and prediction of surface topography characteristics and influence factors of tool passive vibration in milling process

Author:

Zhang WeiORCID,Su Peibin,Zheng Minli,Zhang LeiORCID,Bai Fengsong

Abstract

Abstract The surface topography of the processed workpiece has a significant impact on its service performance, and the tool undergoes passive vibration due to the influence of milling forces during the machining process. This article focuses on the influence of milling parameters and tool passive vibration on the formation process of surface topography. Firstly, the forming mechanism of surface topography during passive vibration of cutting tools was studied, and a cutting edge motion trajectory model considering milling parameters and passive vibration of cutting tools was established; And the influence of milling parameters on surface topography with and without tool passive vibration was analyzed through experiments and simulations; A prediction model for the maximum height S z and areal arithmetic mean height S a of surface topography was established using least squares support vector machine (LSSVM). We used the Improved Particle Swarm Optimization (PSO) algorithm to search for optimal solutions for kernel width coefficients and regularization parameters in LSSVM, and wrote a program to improve the PSO-LSSVM prediction model. The results indicate that the proposed prediction model can provide a certain basis for the selection of actual milling experimental parameters.

Funder

National Natural Science Foundation of China

the Central Government for Supporting the Local High Level Talent

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3