Effect of the measurement contact scale on the thermomechanical characterization of biocomposite surfaces

Author:

Chegdani FaissalORCID,El Mansori Mohamed

Abstract

Abstract This paper proposes a multiscale surface characterization of biocomposites using the nanoindentation technique to identify the functional relationship between the measurement contact scale and the thermomechanical response of each biocomposite component, typically natural plant fibers and the polymer matrix. Flax fiber reinforced polypropylene composites are considered in this investigation. The measurement contact scale in nanoindentation is monitored by the tip indenter radius that ranges from ∼ 10 nm to ∼ 400 nm using different nanoindentation devices (AFM and commercial triboindenters). The thermal contribution is considered by heating the samples during the nanoindentation experiments. Finally, the outputs from multiscale nanoindentation experiments are confronted with the thermomechanical properties reported in the literature with conventional tensile tests as a reference. The results of this paper show the fundamental importance of considering contact scale measurement when characterizing the mechanical properties of biocomposites. Indeed, flax fibers are highly affected by the geometrical contact scale of indentation, while polypropylene does not show a significant dependence on the contact scale. On the other side, flax fibers show a specific multiscale thermomechanical behavior that is related to their hygrometric properties.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3