Mechanical and corrosion behavior of SiC/Graphite/ZrO2 hybrid reinforced aluminum-based composites for marine environment

Author:

Yadav Sukriti,Gangwar SwatiORCID,Yadav Prabhat Chand,Pathak Vimal KumarORCID,Sahu SandeepORCID

Abstract

Abstract Marine conditions are highly contentious for most materials manifested by the decayed condition of old ships and wrecks (made up of steel/wood). This work investigates the mechanical and corrosion behavior of aluminum-based composites reinforced with 3, 6, and 9 wt% of hybrid reinforcements (SiC, graphite, and ZrO2). It was observed that 3 wt% reinforcement composite had the optimum mechanical properties along with minimum corrosion rate. This composition had the least void contents, and its micro-hardness increased by 27.5% (42.6 VHN) in comparison to that of the unreinforced Al (33.3 VHN). Impact strength of the composite increased by 27.2% for 6 wt% hybrid reinforcement (247.1 J) and then started decreasing, whereas tensile strength of the composite increased by 8% for 9 wt% hybrid reinforcement (124.0 MPa) with respect to that of pure Al. The flexural strength of the pure Al reduced with the addition of hard reinforcing particles. The corrosion behavior of the composite was analyzed in 3.5% NaCl solution (simulating the seawater condition) at room temperature with the help of Tafel polarization curve and scanning electron microscopy (SEM) micrographs. It revealed that the 3% reinforced composite had the minimum corrosion current density (0.4 μA) and corrosion rate (0.23 mpy) compared to those of pure Al. The surface morphology of corrosion tested samples indicated the pitting corrosion mechanism.

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3