Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity

Author:

Wang Jing,Li Hua,Jiang Xiankai,Wu Bin,Guo Jun,Su Xiurong,Zhou Xingfei,Wang Yu,Wang Geng,Geng Heping,Jiang Zheng,Huang Fang,Chen Gang,Wang Chunlei,Fang Haiping,Xu Chenqi

Abstract

Copper ions can promote amyloid diseases that are associated with amyloid peptides, such as type 2 diabetes (T2D), Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). However, the underlying molecular mechanism remains obscure. Here we present that Cu2+ is able to specifically bind to the backbone of T2D-related human islet amyloid polypeptide (hIAPP) by forming a ring structure, which causes the reduction of Cu2+ to Cu+ to produce reactive oxygen species (ROS) and the modulation of hIAPP aggregation. Nuclear magnetic resonance spectroscopy showed that Cu2+ bound to the backbone of a turn region, His18–Ser21, which is critical for hIAPP aggregation. Ab initio calculations and x-ray absorption fine structure analyses revealed that Cu2+ simultaneously bound with both the amide nitrogen and carbonyl oxygen on the peptide backbone, resulting in a ring structure, and causing the reduction of Cu2+ to Cu+ to form a hIAPP-Cu+ complex. 2′,7′-dichlorodihydrofluorescin diacetate fluorescence measurements further indicated that this complex led to enhanced ROS levels in rat insulinoma cells. Additionally, thioflavin T fluorescence and atomic force microscopy measurements denoted that the backbone-Cu ring structure largely modulated hIAPP aggregation, including the inhibition of hIAPP fibrillation and the promotion of peptide oligomerization. These findings shed new light on the molecular mechanism of Cu2+-induced amyloid toxicity involving both the enhancement of ROS and the modulation of hIAPP aggregation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3