Spectral attenuation of a 400-nm laser pulse propagating through a plasma filament induced by an intense femtosecond laser pulse*

Author:

Wang Quan-Jun,Chen Rao,Zhao Jia-Chen,Sun Chun-Lin,Wang Xiao-Zhen,Ding Jing-Jie,Liu Zuo-Ye,Hu Bi-Tao

Abstract

The spectral attenuation of a 400-nm probe laser propagating through a femtosecond plasma in air is studied. Defocusing effect of the low-density plasma is an obvious effect by examining the far-field patterns of the 400-nm pulse. Besides, the energy of 400-nm pulse drops after interaction with the plasma, which is found to be another effect leading to the attenuation. To reveal the physical origin behind the energy loss, we measure fluorescence emissions of the interaction area. The fluorescence is hardly detected with the weak 400-nm laser pulse, and the line spectra from the plasma filament induced by the 800-nm pump pulse are clearly shown. However, when the 400-nm pulse propagates through the plasma filament, the fluorescence at 391 nm from the first negative band system of N 2 + is enhanced, while that from the second positive band of neutral N2 at 337 nm remains constant. Efficient near-resonant absorption of the 400-nm pulse by the first negative band system occurs inside the plasma, which results in the enhanced fluorescence. Furthermore, the spectral attenuation of the 400-nm probe laser is measured as a function of the pump–probe time delay as well as the pump-pulse energy.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3