Chaotic analysis of Atangana–Baleanu derivative fractional order Willis aneurysm system*

Author:

Gao Fei,Li Wen-Qin,Tong Heng-Qing,Li Xi-Ling

Abstract

A new Willis aneurysm system is proposed, which contains the Atangana–Baleanu(AB) fractional derivative. we obtain the numerical solution of the Atangana–Baleanu fractional Willis aneurysm system (ABWAS) with the AB fractional integral and the predictor–corrector scheme. Moreover, we research the chaotic properties of ABWAS with phase diagrams and Poincare sections. The different values of pulse pressure and system order are used to evaluate and compare their effects on ABWAS. The simulations verify that the changes of pulse pressure and system order are the significant reason for ABWAS’ states varying from chaotic to steady. In addition, compared with Caputo fractional WAS (FWAS), ABWAS shows less state that is chaotic. Furthermore, the results of bifurcation diagrams of blood flow damping coefficient and reciprocal heart rate show that the blood flow velocity tends to stabilize with the increase of blood flow damping coefficient or reciprocal heart rate, which is consistent with embolization therapy and drug therapy for clinical treatment of cerebral aneurysms. Finally, in view of the fact that ABWAS in chaotic state increases the possibility of rupture of cerebral aneurysms, a reasonable controller is designed to control ABWAS based on the stability theory. Compared with the control results of FWAS by the same method, the results show that the blood flow velocity in the ABWAS system varies in a smaller range. Therefore, the control effect of ABWAS is better and more stable. The new Willis aneurysm system with Atangana–Baleanu fractional derivative provides new information for the further study on treatment and control of brain aneurysms.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3