Dissipation and amplification management in an electrical model of microtubules: Hybrid behavior network

Author:

Ndoungalah Sedric,Roger Deffo Guy,Djine Arnaud,Bruno Yamgoué Serge

Abstract

The control of dissipation and amplification of solitary waves in an electrical model of a microtubule is demonstrated. This model consists of a shunt nonlinear resistance–capacitance (J(V)–C(V)) circuit and a series resistance–inductance (RL) circuit. Through linear dispersion analysis, two features of the network are found, that is, low bandpass and bandpass filter characteristics. The effects of the conductance’s parameter λ on the linear dispersion curve are also analyzed. It appears that an increase of λ induces a decrease (an increase) of the width of the bandpass filter for positive (negative) values of λ. By applying the reductive perturbation method, we derive the equation governing the dynamics of the modulated waves in the system. This equation is the well-known nonlinear Schrödinger equation extended by a linear term proportional to a hybrid parameter σ, i.e., a dissipation or amplification coefficient. Based on this parameter, we successfully demonstrate the hybrid behavior (dissipation and amplification) of the system. The exact and approximate solitary wave solutions of the obtained equation are derived, and the effects of the coefficient σ on the characteristic parameters of these waves are investigated. Using the analytical solutions found, we show numerically that the waves that are propagated throughout the system can be dissipated, amplified, or remain stable depending on the network parameters. These results are not only in agreement with the analytical predictions, but also with the existing experimental results in the literature.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3