tP40 carbon: A novel superhard carbon allotrope*

Author:

Liu Heng,Fan Qing-Yang,Yang Fang,Yu Xin-Hai,Zhang Wei,Yun Si-Ning

Abstract

In this work, a novel carbon allotrope tP40 carbon with space group P4/mmm is proposed. The structural stability, mechanical properties, elastic anisotropy, and electronic properties of tP40 carbon are investigated systematically by using density functional theory (DFT). The calculated elastic constants and phonon dispersion spectra indicate that the tP40 phase is a metastable carbon phase with mechanical stability and dynamic stability. The B/G ratio indicates that tP40 carbon is brittle from 0 GPa to 60 GPa, while tP40 carbon is ductile from 70 GPa to 100 GPa. Additionally, the anisotropic factors and the directional dependence of the Poisson’s ratio, shear modulus, and Young’s modulus of tP40 carbon at different pressures are estimated and plotted, suggesting that the tP40 carbon is elastically anisotropic. The calculated hardness values of tP40 carbon are 44.0 GPa and 40.2 GPa obtained by using Lyakhov–Oganov’s model and Chen’s model, respectively, which means that the tP40 carbon can be considered as a superhard material. The electronic band gap within Heyd–Scuseria–Ernzerhof hybrid functional (HSE06) is 4.130 eV, and it is found that the tP40 carbon is an indirect and wider band gap semiconductor material.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3