Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer*

Author:

An Xuee,Shang Zhengjun,Ma Chuanhe,Zheng Xinhe,Zhang Cuiling,Sun Lin,Yue Fangyu,Li Bo,Chen Ye

Abstract

Abstract Temperature and excitation dependent photoluminescence (PL) of InGaN epilayer grown on c-plane GaN/sapphire template by molecular beam epitaxy (MBE) has been systematically investigated. The emission spectra of the sample consisted of strong multiple peaks associated with one stimulated emission (SE) located at 430 nm and two spontaneous emissions (SPE) centered at about 450 nm and 480 nm, indicating the co-existence of shallow and deep localized states. The peak energy of SE exhibiting weak s-shaped variation with increasing temperature revealed the localization effect of excitons. Moreover, an abnormal increase of the SPE intensity with increasing temperature was also observed, which indicated that the carrier transfer between the shallow and deeper localized states exists. Temperature dependent time-resolved PL (TRPL) demonstrated the carrier transfer processes among the localized states. In addition, a slow thermalization of hot carriers was observed in InGaN film by using TRPL and transient differential reflectivity, which is attributed to the phonon bottleneck effect induced by indium aggregation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3