Nonlinear dynamics of cell migration in anisotropic microenvironment*

Author:

Liu Yanping,He Da,Jiao Yang,Li Guoqiang,Zheng Yu,Fan Qihui,Wang Gao,Yao Jingru,Chen Guo,Lou Silong,Liu Liyu

Abstract

Cell migration in anisotropic microenvironment plays an important role in the development of normal tissues and organs as well as neoplasm progression, e.g., osteogenic differentiation of embryonic stem cells was facilitated on stiffer substrates, indicating that the mechanical signals greatly affect both early and terminal differentiation of embryonic stem cells. However, the effect of anisotropy on cell migration dynamics, in particular, in terms of acceleration profiles which is important for recognizing dynamics modes of cell migration and analyzing the regulation mechanisms of microenvironment in mechanical signal transmission, has not been systematically investigated. In this work, we firstly rigorously investigate and quantify the differences between persistent random walk and anisotropic persistent random walk models based on the analysis of cell migration trajectories and velocity auto-covariance function, both qualitatively and quantitatively. Secondly, we introduce the concepts of positive and negative anisotropy based on the motility parameters to study the effect of anisotropy on acceleration profiles, especially the nonlinear decrease and non-monotonic behaviors. We particularly elaborate and discuss the mechanisms, and physical insights of non-monotonic behaviors in the case of positive anisotropy, focusing on the force exerted on migrating cells. Finally, we analyze two types of in vitro cell migration experiments and verify the universality of nonlinear decrease and the consistence of non-monotonic behaviors with numerical results. We conclude that the anisotropy of microenvironment is the cause of the non-monotonic and nonlinear dynamics, and the anisotropic persistent random walk can be as a suitable tool to analyze in vitro cell migration with different combinations of motility parameters. Our analysis provides new insights into the dynamics of cell migration in complex microenvironment, which also has implications in tissue engineering and cancer research.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3