Author:
Xue 薛 Miao 淼,Zheng 郑 Guo-Yao 国尧,Xue 薛 Lei 雷,Li 李 Jia-Xian 佳鲜,Wang 王 Shuo 硕,Du 杜 Hai-Long 海龙,Zhu 朱 Yi-Ren 毅仁,Zhou 周 Yue 月
Abstract
Abstract
The hybrid scenario, which has good confinement and moderate MHD instabilities, is a proposed operation scenario for international thermonuclear experimental reactor (ITER). In this work, the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT. The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n
bar ∼ 7 × 1019 m−3. In this case, the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 105 rad/s to 103 rad/s, which means that the turbulent heat transport is not dominant. While in the scenarios characterized by lower densities, such as n
bar ∼ 4 × 1019 m−3, turbulent transport becomes dominant in determining heat transport. The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 103 rad/s to 105 rad/s. Despite the ion temperature rising, the rotation velocity does not obviously affect electron temperature or density. Additionally, it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.