Acoustic radiation force on a cylindrical composite particle with an elastic thin shell and an internal eccentric liquid column in a plane ultrasonic wave field

Author:

Pan 潘 Rui-Qi 瑞琪,Du 杜 Zhi-Wei 芷玮,Wang 王 Cheng-Hui 成会,Hu 胡 Jing 静,Mo 莫 Run-Yang 润阳

Abstract

Abstract A model with three-layer structure is introduced to explore the acoustic radiation force (ARF) on composite particles with an elastic thin shell. Combing acoustic scattering of cylinder and the thin-shell theorem, the ARF expression was derived, and the longitudinal and transverse components of the force and axial torque for an eccentric liquid-filled composite particle was obtained. It was found that many factors, such as medium properties, acoustic parameters, eccentricity, and radius ratio of the inner liquid column, affect the acoustic scattering field of the particle, which in turn changes the forces and torque. The acoustic response varies with the particle structures, so the resonance peaks of the force function and torque shift with the eccentricity and radii ratio of particle. The acoustic response of the particle is enhanced and exhibits higher force values due to the presence of the elastic thin shell and the coupling effect with the eccentricity of the internal liquid column. The decrease of the inner liquid density may suppress the high-order resonance peaks, and internal fluid column has less effects on the change in force on composite particle at ka > 3, while limited differences exist at ka < 3. The axial torque on particles due to geometric asymmetry is closely related to ka and the eccentricity. The distribution of positive and negative force and torque along the axis ka exhibits that composite particle can be manipulated or separated by ultrasound. Our theoretical analysis can provide support for the acoustic manipulation, sorting, and targeting of inhomogeneous particles.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3