NovelWoods–Saxon stochastic resonance system for weak signal detection*

Author:

Zhou Yong-Hui,Xu Xue-Mei,Yin Lin-Zi,Ding Yi-Peng,Ding Jia-Feng,Sun Ke-Hui

Abstract

We propose a joint exponential function and Woods–Saxon stochastic resonance (EWSSR) model. Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the potential function, it is difficult to obtain the optimal output signal-to-noise ratio by adjusting one parameter. In the novel system, the influence of different parameters on the shape of the potential function has its own emphasis, making it easier for us to adjust the shape of the potential function. The system can obtain different widths of the potential well or barrier height by adjusting one of these parameters, so that the system can match different types of input signals adaptively. By adjusting the system parameters, the potential function model can be transformed between the bistable model and the monostable model. The potential function of EWSSR has richer shapes and geometric characteristics. The effects of parameters, such as the height of the barrier and the width of the potential well, on SNR are studied, and a set of relatively optimal parameters are determined. Moreover, the EWSSR model is compared with other classical stochastic resonance models. Numerical experiments show that the proposed EWSSR model has higher SNR and better noise immunity than other classical stochastic resonance models. Simultaneously, the EWSSR model is applied to the detection of actual bearing fault signals, and the detection effect is also superior to other models.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3