Noise temperature distribution of superconducting hot electron bolometer mixers*

Author:

Zhou Kang-Min,Miao Wei,Geng Yue,Delorme Yan,Zhang Wen,Ren Yuan,Zhang Kun,Shi Sheng-Cai

Abstract

We report on the investigation of optimal bias region of a wide-band superconducting hot electron bolometer (HEB) mixer in terms of noise temperature performance for multi-pixel heterodyne receiver application in the 5-meter Dome A Terahertz Explorer (DATE5) telescope. By evaluating the double sideband (DSB) receiver noise temperature (T rec) across a wide frequency range from 0.2 THz to 1.34 THz and with a large number of bias points, a broad optimal bias region has been observed, illustrating a good bias applicability for multipixel application since the performance of the HEB mixer is uniquely determined by each bias point. The noise temperature of the HEB mixer has been analyzed by calibrating the noise contribution of all RF components, whose transmissions have been measured by a time-domain spectroscopy. The corrected noise temperature distribution shows a frequency independence relation. The dependence of the optimal bias region on the bath temperature of the HEB mixer has also been investigated, the bath temperature has limited effect on the lowest receiver noise temperature until 7 K, however the optimal bias region deteriorates obviously with increasing bath temperature.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3