Author:
Zhang Xue-Wei,Liu Shao-Bin,Yu Qi-Ming,Wang Ling-Ling,Liao Kun,Lou Jian
Abstract
An ultra-wideband bandpass filter (BPF) with a wide out-of-band rejection based on a surface plasmonic waveguide (SPW) slotline with ring grooves is designed and analyzed. A paired microstrip-to-slotline transition is designed for quasi-TEM to TM mode conversion by using a microstrip line with a circular pad and the slotline with the same circular slot. The mode conversion between the TM and the surface plasmon polariton (SPP) mode is realized by using a gradient slotline with ring grooves and an impedance matching technique. The upper cut-off frequencies of the passband can be adjusted by using these proposed SPP units, while the lower frequencies of the passband are created by using the microstrip-to-slotline transitions to give an ultra-wideband BPF. The dispersion curves of SPP units, electric field distribution, and the transmission spectra of the proposed ultra-wideband bandpass filter are all calculated and analyzed by the finite-difference time-domain (FDTD) method. The simulated results show that the presented filter has good performance including a wide 3-dB bandwidth of 149% from 0.57 GHz to 3.93 GHz, an extremely wide 40-dB upper-band rejection from 4.2 GHz to 18.5 GHz, and low loss and high selectivity in the passband. To prove the design validity, a prototype of the BPF has been manufactured and measured, showing a reasonable agreement with simulation results. The unique features of the proposed BPF may make it applicable for integrated circuit and plasmonic devices in microwave or THz frequency ranges.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献