Effect of local wall temperature on hypersonic boundary layer stability and transition

Author:

Lu 鲁 Ruiyang 锐洋,Huang 黄 Zhangfeng 章峰

Abstract

Wall temperature significantly affects stability and receptivity of the boundary layer. Changing the wall temperature locally may therefore be an effective laminar flow control technique. However, the situation is complicated when the wall temperature distribution is nonuniform, and researchers have experimentally found that local wall cooling may delay the onset of transition. We attempt to clarify the physical mechanisms whereby the local wall temperature affects the transition and the stability of a hypersonic boundary layer. A numerical investigation of the disturbance evolution in a Mach-6 sharp cone boundary layer with local wall heating or cooling is conducted. Direct numerical simulation (DNS) is performed for the single-frequency and broadband disturbance evolution caused by random forcing. We vary the local wall temperature and the location of heating/cooling, and then use the e N method to estimate the transition onset. Our results show that local wall cooling amplifies high-frequency unstable waves while stabilizing low-frequency unstable waves, with local heating amplifying all unstable waves locally. The disturbance amplitude and second-mode peak frequency obtained by DNS agree well with the previous experimental results. Local cooling/heating has a dual effect on the stability of the hypersonic boundary layer. For local cooling, while it effectively inhibits the growth of the low-frequency unstable waves that dominate the transition downstream, it also further destabilizes the downstream flow. In addition, while upstream cooling can delay the transition, excessive cooling may promote it; local heating always slightly promotes the transition. Finally, recommendations are given for practical engineering applications based on the present results.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3