Degradation mechanism of high-voltage single-crystal LiNi0.5Co0.2Mn0.3O2 cathode material

Author:

Liu 柳 Na 娜

Abstract

Layered cathode materials have been successfully commercialized and applied to electric vehicles. To further improve improve the energy density of these marterials is still the main efforts in the market. Therefore, developing high-voltage LiNi x Co y Mn z O2 (x + y + z = 1, NCM) to achieve high energy density is particularly important. However, under high voltage cycling, NCM often exhibits rapid capacity degradation, which can be attributed to oxygen release, structural phase transition and particle cracking. In this work, the representative single-crystal LiNi0.5Co0.2Mn0.3O2 (NCM523) was studied under various high charge cut-off voltages. Analysis by x-ray diffraction (XRD), transmission electron microscope (TEM) and electron back scatter diffraction (EBSD) measurements indicated that the rock-salt phase is formed on the surface of the particles after high voltage cycling, which is responsible for the increase of impedance and the rapid decay of capacity. Therefore, inhibiting the formation of rock-salt phase is believed an effective strategy to address the failure of NCM under high voltages. These findings provide effective guidance for the development of high-voltage NCM.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3