A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region*

Author:

Jiang Tao,Jiang Rong-Rong,Huang Jin-Jing,Ding Jiu,Ren Jin-Lian

Abstract

A local refinement hybrid scheme (LRCSPH-FDM) is proposed to solve the two-dimensional (2D) time fractional nonlinear Schrödinger equation (TF-NLSE) in regularly or irregularly shaped domains, and extends the scheme to predict the quantum mechanical properties governed by the time fractional Gross–Pitaevskii equation (TF-GPE) with the rotating Bose–Einstein condensate. It is the first application of the purely meshless method to the TF-NLSE to the author’s knowledge. The proposed LRCSPH-FDM (which is based on a local refinement corrected SPH method combined with FDM) is derived by using the finite difference scheme (FDM) to discretize the Caputo TF term, followed by using a corrected smoothed particle hydrodynamics (CSPH) scheme continuously without using the kernel derivative to approximate the spatial derivatives. Meanwhile, the local refinement technique is adopted to reduce the numerical error. In numerical simulations, the complex irregular geometry is considered to show the flexibility of the purely meshless particle method and its advantages over the grid-based method. The numerical convergence rate and merits of the proposed LRCSPH-FDM are illustrated by solving several 1D/2D (where 1D stands for one-dimensional) analytical TF-NLSEs in a rectangular region (with regular or irregular particle distribution) or in a region with irregular geometry. The proposed method is then used to predict the complex nonlinear dynamic characters of 2D TF-NLSE/TF-GPE in a complex irregular domain, and the results from the posed method are compared with those from the FDM. All the numerical results show that the present method has a good accuracy and flexible application capacity for the TF-NLSE/GPE in regions of a complex shape.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3