Efficient and stable wireless power transfer based on the non-Hermitian physics

Author:

Zeng Chao,Guo Zhiwei,Zhu Kejia,Fan Caifu,Li Guo,Jiang Jun,Li Yunhui,Jiang Haitao,Yang Yaping,Sun Yong,Chen Hong

Abstract

As one of the most attractive non-radiative power transfer mechanisms without cables, efficient magnetic resonance wireless power transfer (WPT) in the near field has been extensively developed in recent years, and promoted a variety of practical applications, such as mobile phones, medical implant devices and electric vehicles. However, the physical mechanism behind some key limitations of the resonance WPT, such as frequency splitting and size-dependent efficiency, is not very clear under the widely used circuit model. Here, we review the recently developed efficient and stable resonance WPT based on non-Hermitian physics, which starts from a completely different avenue (utilizing loss and gain) to introduce novel functionalities to the resonance WPT. From the perspective of non-Hermitian photonics, the coherent and incoherent effects compete and coexist in the WPT system, and the weak stable of energy transfer mainly comes from the broken phase associated with the phase transition of parity–time symmetry. Based on this basic physical framework, some optimization schemes are proposed, including using nonlinear effect, using bound states in the continuum, or resorting to the system with high-order parity-time symmetry. Moreover, the combination of non-Hermitian physics and topological photonics in multi-coil system also provides a versatile platform for long-range robust WPT with topological protection. Therefore, the non-Hermitian physics can not only exactly predict the main results of current WPT systems, but also provide new ways to solve the difficulties of previous designs.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3