Controllable and switchable chiral near-fields in symmetric graphene metasurfaces*

Author:

Hu Li,Dai Hongxia,Cheng Fayin,Tang Yuxia

Abstract

A strong chiral near-field plays significant roles in the detection, separation and sensing of chiral molecules. In this paper, a simple and symmetric metasurface is proposed to generate strong chiral near-fields with both circularly polarized light and linearly polarized light illuminations in the mid-infrared region. Owing to the near-field interaction between plasmonic resonant modes of two nanosheets excited by circularly polarized light, there is a strong single-handed chiral near-field in the gap between the two graphene nanosheets and the maximum enhancement of the optical chirality could reach two orders of magnitude. As expected, the intensity and the response wavelength of the chiral near-fields could be controlled by the Fermi level and geometrical parameters of the graphene nanosheets, as well as the permittivity of the substrate. Meanwhile, based on the interaction between the incident field and scattered field, the one-handed chiral near-field in the gap also could be generated by the linearly polarized light excitation. For the two cases, the handedness of the chiral near-field could be switched by the polarized direction of the incident light. These results have potential opportunities for applications in molecular detection and sensing.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3