Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment

Author:

Yang Jiaji,Li Xuejing,Jia Yanhua,Zhang Jiang,Jiang Qinglin

Abstract

Thermoelectric (TE) energy harvesting can effectively convert waste heat into electricity, which is a crucial technology to solve energy concerns. As a promising candidate for energy conversion, poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) has gained significant attention owing to its easy doping, high transparency, and solution processability. However, the TE performance of PEDOT:PSS still needs to be further enhanced. Herein, different approaches have been applied for tuning the TE properties: (i) direct dipping PEDOT:PSS thin films in ionic liquid; (ii) post-treatment of the films with concentrated sulfuric acid (H2SO4), and then dipping in ionic liquid. Besides, the same bis(trifluoromethanesulfonyl)amide (TFSI) anion and different cation salts, including 1-ethyl-3-methylimidazolium (EMIM+) and lithium (Li+), are selected to study the influence of varying cation types on the TE properties of PEDOT:PSS. The Seebeck coefficient and electrical conductivity of the PEDOT:PSS film treated with H2SO4EMIM:TFSI increase simultaneously, and the resulting maximum power factor is 46.7 μW⋅m−1⋅K–2, which may be attributed to the ionic liquid facilitating the rearrangement of the molecular chain of PEDOT. The work provides a reference for the development of organic films with high TE properties.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3