Impact of microsecond-pulsed plasma-activated water on papaya seed germination and seedling growth

Author:

Xi Deng-Ke,Zhang Xian-Hui,Yang Si-Ze,Yap Seong Shan,Ishikawa Kenji,Hori Masura,Yap Seong Ling

Abstract

The seed of Carica papaya consists of a hard shell-like testa with inhibitors in vivo causing slow, erratic and asynchronous germination. In this work, plasma-activated water prepared by microsecond-pulsed plasma jets (μPAW) was applied to treat papaya seeds. The μPAW after plasma activation of 30 min was about 40 °C. The reactive species such as NO2, NO3, and H2O2 in the μPAW activated from deionized water were measured and correlated to the seed germination rate and the seedling growth performance. The μPAW-treated papaya seed achieved a higher germination rate of 90%, which is 26% higher than the control group using deionized water. Comparing the results with a hot water (40 °C) reference group showed that the reactive species in μPAW played primary roles in germination improvement, with little effect caused by the heat shock. The μPAW also sterilized the treated seeds, reducing the germination stress. The morphological change in the seeds was observed by SEM, showing an effect of physical etching after treatment promoting seed imbibition. The biochemical mechanism of the seed germination was deduced with reference to the evolution of surface chemistry, functional groups, and ABA content. The accelerated seed metabolism observed was corresponded to the chemical modification pathway. Besides, early seedlings developed from treated seeds were observed to be healthy, grow more leaves, and have better root structures. The content of MDA in the treated papaya seedlings decreased along with increased SOD and higher ion concentration. The μPAW that can be prepared at atmospheric pressure for bulk production offers a low-risk and cost-effective seed priming technology that may significantly increase the production of agricultural crops.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3