Evaluation of performance of machine learning methods in mining structure–property data of halide perovskite materials

Author:

Zhao Ruoting,Xing Bangyu,Mu Huimin,Fu Yuhao,Zhang Lijun

Abstract

With the rapid development of artificial intelligence and machine learning (ML) methods, materials science is rapidly entering the era of data-driven materials informatics. ML models serve as the most crucial component, closely bridging material structure and material properties. There is a considerable difference in the prediction performance of different ML methods for material systems. Herein, we evaluated three categories (linear, kernel, and nonlinear methods) of models, with twelve ML algorithms commonly used in the materials field. In addition, halide perovskite was chosen as an example to evaluate the fitting performance of different models. We constructed a total dataset of 540 halide perovskites and 72 features, with formation energy and bandgap as target properties. We found that different categories of ML models show similar trends for different target properties. Among them, the difference between the models is enormous for the formation energy, with the coefficient of determination (R 2) range 0.69–0.953. The fitting performance between the models is closer for bandgap, with the R 2 range 0.941–0.997. The nonlinear-ensemble model shows the best fitting performance for both the formation energy and the bandgap. It shows that the nonlinear-ensemble model, constructed by combining multiple weak learners, effectively describes the nonlinear relationship between material features and target property. In addition, the extreme gradient boosting decision tree model shows the most superior results among all the models and searches for two new descriptors that are crucial for formation energy and bandgap. Our work provides useful guidance for the selection of effective machine learning methods in the data-mining studies of specific material systems. The dataset that supported the findings of this study is available in Science Data Bank, with the link https://www.doi.org/10.11922/sciencedb.01611.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3