Vertical WS2 spin valve with Ohmic property based on Fe3GeTe2 electrodes*

Author:

Hu Ce,Yan Faguang,Li Yucai,Wang Kaiyou

Abstract

The two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have been recently proposed as a promising class of materials for spintronic applications. Here, we report on the all-2D van der Waals (vdW) heterostructure spin valve device comprising of an exfoliated ultra-thin WS2 semiconductor acting as the spacer layer and two exfoliated ferromagnetic Fe3GeTe2 (FGT) metals acting as ferromagnetic electrodes. The metallic interface rather than Schottky barrier is formed despite the semiconducting nature of WS2, which could be originated from the strong interface hybridization. The spin valve effect persists up to the Curie temperature of FGT. Moreover, our metallic spin valve devices exhibit robust spin valve effect where the magnetoresistance magnitude does not vary with the applied bias in the measured range up to 50 μA due to the Ohmic property, which is a highly desirable feature for practical application that requires stable device performance. Our work reveals that WS2-based all-2D magnetic vdW heterostructure, facilitated by combining 2D magnets, is expected to be an attractive candidate for the TMDCs-based spintronic applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3