Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos–Hänchen shift

Author:

Lang Yao-Pu,Liu Qing-Gang,Wang Qi,Zhou Xing-Lin,Jia Guang-Yi

Abstract

This paper puts forward a novel method of measuring the thin period-structure-film thickness based on the Bloch surface wave (BSW) enhanced Goos–Hänchen (GH) shift in one-dimensional photonic crystal (1DPC). The BSW phenomenon appearing in 1DPC enhances the GH shift generated in the attenuated total internal reflection structure. The GH shift is closely related to the thickness of the film which is composed of layer-structure of 1DPC. The GH shifts under multiple different incident light conditions will be obtained by varying the wavelength and angle of the measured light, and the thickness distribution of the entire structure of 1DPC is calculated by the particle swarm optimization (PSO) algorithm. The relationship between the structure of a 1DPC film composed of TiO2 and SiO2 layers and the GH shift, is investigated. Under the specific photonic crystal structure and incident conditions, a giant GH shift, 5.1 × 103 times the wavelength of incidence, can be obtained theoretically. Simulation and calculation results show that the thickness of termination layer and periodic structure bilayer of 1DPC film with 0.1-nm resolution can be obtained by measuring the GH shifts. The exact structure of a 1DPC film is innovatively measured by the BSW-enhanced GH shift.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3