Author:
Ali Zafar,Ismail Javaid,Hussain Rafaqat,Shah A.,Mahmood Arshad,Mohammad Toufiq Arbab,Rahman Shams ur
Abstract
We report the hydrothermal growth of pure and doped TiO2 nanoparticles with different concentrations of carbon. The microstructure of the as-synthesized samples is characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive x-ray spectroscopy (EDX), and Raman spectroscopy to understand the structure and composition. The XRD patterns confirm the formation of anatase phase of TiO2 with the average crystallite size is calculated to be in the range of 13 nm to 14.7 nm. The functional groups of these nanostructures are characterized by Fourier transformed infrared (FT-IR) spectroscopy, which further confirms the single anatase phase of the synthesized nanostructures. UV-visible absorption spectroscopy is used to understand the absorption behavior, which shows modification in the optical bandgap from 3.13 eV (pure TiO2) to 3.74 eV (1.2 mol% C-doped TiO2). Furthermore, the Ti3+ centers associated with oxygen vacancies are identified using electron paramagnetic resonance spectroscopy (EPR).
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献