Constructing refined null models for statistical analysis of signed networks*

Author:

Li Ai-Wen,Xiao Jing,Xu Xiao-Ke

Abstract

The establishment of effective null models can provide reference networks to accurately describe statistical properties of real-life signed networks. At present, two classical null models of signed networks (i.e., sign and full-edge randomized models) shuffle both positive and negative topologies at the same time, so it is difficult to distinguish the effect on network topology of positive edges, negative edges, and the correlation between them. In this study, we construct three refined edge-randomized null models by only randomizing link relationships without changing positive and negative degree distributions. The results of nontrivial statistical indicators of signed networks, such as average degree connectivity and clustering coefficient, show that the position of positive edges has a stronger effect on positive-edge topology, while the signs of negative edges have a greater influence on negative-edge topology. For some specific statistics (e.g., embeddedness), the results indicate that the proposed null models can more accurately describe real-life networks compared with the two existing ones, which can be selected to facilitate a better understanding of complex structures, functions, and dynamical behaviors on signed networks.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3