Author:
Zhang Rui-Zi,Zhang Yu-Yang,Du Shi-Xuan
Abstract
V5S8 is an ideal candidate to explore the magnetism at the two-dimensional (2D) limit. A recent experiment has shown that the V5S8 thin films exhibit an antiferromagnetic (AFM) to ferromagnetic (FM) phase transition with reducing thickness. Here, for the first time, using density functional theory calculations, we report the antiferromagnetic order of bulk V5S8, which is consistent with the previous experiments. The specific antiferromagnetic order is reproduced when U
eff = 2 eV is applied on the intercalated vanadium atoms within LDA. We find that the origin of the magnetic ordering is from superexchange interaction. We also investigate the thickness-dependent magnetic order in V5S8 thin films. It is found that there is an antiferromagnetic to ferromagnetic phase transition when V5S8 is thinned down to 2.2 nm. The main magnetic moments of the antiferromagnetic and ferromagnetic states of the thin films are located on the interlayered vanadium atoms, which is the same as that in the bulk. Meanwhile, the strain in the thin films also influences the AFM–FM phase transition. Our results not only reveal the magnetic order and origin in bulk V5S8 and thin films, but also provide a set of parameters which can be used in future calculations.
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献