In situ measurement on nonuniform velocity distribution in external detonation exhaust flow by analysis of spectrum features using TDLAS

Author:

Huang Xiao-Long,Li Ning,Weng Chun-Sheng,Kang Yang

Abstract

Abstract Instantaneous and precise velocity sensing is a critical part of research on detonation mechanism and flow evolution. This paper presents a novel multi-projection tunable diode laser absorption spectroscopy solution, to provide a real-time and reliable measurement of velocity distribution in detonation exhaust flow with obvious nonuniformity. Relations are established between overlapped spectrums along probing beams and Gauss velocity distribution phantom according to the frequency shifts and tiny variations in components of light-of-sight absorbance profiles at low frequencies analyzed by the fast Fourier transform. With simulated optical measurement using H2O feature at 7185.6 cm−1 carried out on a phantom generated using a simulation of two-phase detonation by a two-fluid model, this method demonstrates a satisfying performance on recovery of velocity distribution profiles in supersonic flow even with a noise equivalent absorbance up to 2 × 10−3. This method is applied to the analysis of rapidly decreasing velocity during a complete working cycle in the external flow field of an air-gasoline detonation tube operating at 25 Hz, and results show the velocity in the core flow field would be much larger than the arithmetic average from traditional tunable diode laser doppler velocimetry. This proposed velocity distribution sensor would reconstruct nonuniform velocity distribution of high-speed flow in low cost and simple operations, which broadens the possibility for applications in research on the formation and propagation of external flow filed of detonation tube.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3