Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films

Author:

An Simin,Gao Xingyu,Zhang Xian,Chen Xin,Xian Jiawei,Liu Yu,Sun Bo,Liu Haifeng,Song Haifeng

Abstract

Lattice parameters are a basic quantity in material characterization, and a slight alteration in lattice parameters directly affects the properties of materials. However, there are still considerable controversies as to whether lattice expansion or contraction occurs in metallic nanomaterials with size reduction. Here, the size dependences of the lattice parameter and surface free energy of clean Cu (100) films are investigated via simulations. Lattice parameters of the exposed surfaces contract, whereas lattice expansion occurs along the direction perpendicular to the surfaces with decreasing film thicknesses. This is striking since the metallic bonds usually lack strong directionality, and it is always regarded that the lattice variations in all directions are consistent. The contraction parallel to the surface is more severe than the expansion perpendicular to the surface in films. The lattices change from cubic to tetragonal with decreasing film thickness. Consequently, common contractions and occasional expansions of the lattice parameters of Cu nanoparticles have been observed in previous experiments. Increasing free energy and surface free energy with decreasing thicknesses is the thermodynamic origin of the lattice variations. Our study therefore provides a comprehensive physical basis for the surface effects on the lattice variations.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3