Restricted Boltzmann machine: Recent advances and mean-field theory*

Author:

Decelle Aurélien,Furtlehner Cyril

Abstract

This review deals with restricted Boltzmann machine (RBM) under the light of statistical physics. The RBM is a classical family of machine learning (ML) models which played a central role in the development of deep learning. Viewing it as a spin glass model and exhibiting various links with other models of statistical physics, we gather recent results dealing with mean-field theory in this context. First the functioning of the RBM can be analyzed via the phase diagrams obtained for various statistical ensembles of RBM, leading in particular to identify a compositional phase where a small number of features or modes are combined to form complex patterns. Then we discuss recent works either able to devise mean-field based learning algorithms; either able to reproduce generic aspects of the learning process from some ensemble dynamics equations or/and from linear stability arguments.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning restricted Boltzmann machines with pattern induced weights;Neurocomputing;2024-12

2. Community detection in social networks using machine learning: a systematic mapping study;Knowledge and Information Systems;2024-08-12

3. Foundations of Generative AI;Advances in Computational Intelligence and Robotics;2024-06-28

4. Cross-Selling Artificial Intelligence-Based Approaches in Insurance Industry: A Review;2024 14th International Conference on Electrical Engineering (ICEENG);2024-05-21

5. Gaussian-discrete restricted Boltzmann machine with sparse-regularized hidden layer;Behaviormetrika;2024-04-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3